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Abstract. The induced dipole dispersion-type contribu-
tions to the two-body and nonadditive three-body
energies and electric dipole polarizabilities are studied
for long-range interactions involving the He, Ne, Ar and
Kr atoms and the H, and N, molecules. The coupled-
cluster singles and doubles model and large basis sets are
used. Comparison of the energy contributions with data
derived from experiment shows in most cases the
deviations to be less than 1%; therefore, it may be
expected that the calculated polarizability increments are
accurately determined and can be used to estimate the
accuracy of approximate methods.
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1 Introduction

The theory of weak long-range intermolecular forces is
nowadays successfully applied to predict interaction
energies [1]. The interaction-induced changes of atomic
and molecular properties have been less well studied
even though the changes in the electric polarizabilities
and hyperpolarizabilities owing to intermolecular forces
affect, for example, the collision-induced light scattering
spectra [2] and dielectric and optical properties of
compressed fluids [3-5].

Ab initio electronic structure studies of collision-in-
duced pair polarizabilities have been carried out [6]. The
accuracy of recent ab initio studies for the He dimer
[7-11] is very high and the results have been successfully
used to interpret the experimental data, see e.g. [12] for a
study of collision-induced spectra. Similar studies for the
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Ar pair polarizability also show good overall agreement
with the experimental data [8-10, 13].

The first step towards ensuring high accuracy is to
investigate the long-range behaviour of the interaction-
induced effects. Asymptotic expansions show, just like
for the energies, that the interaction-induced polariz-
abilities can be decomposed into different contributions
(induction, dispersion, etc.) that are proportional to the
inverse powers of the interatomic or intermolecular
distance; however, accurate expansion coefficients have
been determined only for H, He and H, [14, 15].

We summarize here only briefly the theory for the
dispersion energies and the dispersion polarizabilities,
and refer the reader to Refs. [16, 17] for details. For the
dispersion energies, we compare our results mainly with
the dipole oscillator strength distribution (DOSD) val-
ues. They are generally used and apparently so far no ab
initio values of similar accuracy have been obtained
systematically.

More specifically, we refer to the work of Champagne
et al. [17] for a description of the theory of the interac-
tion-induced polarizabilities. The classical contribution
is easily determined, as it depends only on the static
polarizabilities of the interacting atoms or molecules
[18]. The dispersion term is the computationally difficult
one, for both two- and three-body interactions, and we
concentrate in this work on this contribution. Apart
from two-electron systems, primarily estimates based on
static properties have been used to obtain the dispersion
contributions [17]. In the so-called constant-ratio ap-
proximation (CRA) it is assumed that the ratio of inte-
grals involving properties that depend on imaginary
frequencies can be estimated from the ratio of corre-
sponding static properties. This is a relatively crude
approach, especially considering that frequency-depen-
dent polarizabilities and hyperpolarizabilities can now-
adays be computed accurately, at least for small atoms
and molecules.

We present here the results for the interactions of
rare-gas atoms and H; and N, molecules obtained
within a coupled-cluster singles and doubles (CCSD)
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approach [19]. The details of response theory for a
coupled-cluster parameterization of the wavefunction
are discussed elsewhere. A general description of the
method is given, for example, in Ref. [20]. The imple-
mentation of the dispersion coefficients for linear and
cubic response properties in coupled-cluster response
theory is described in Refs. [21, 22].

2 Theory and formulae

In this section we briefly summarize some of the
highlights of the theory of interaction energy and electric
dipole polarizabilities, mainly to provide some defini-
tions and useful formulae.

2.1 Dispersion contribution to the interaction energy

The second-order dipole—dipole dispersion interaction
energy between two non-overlapping closed shell atoms
a and b is often approximated as [23] (atomic units,
unless specified otherwise)

) Cab
EGR) = ——& (1)

where R = |R,;| is the interatomic distance and the
dispersion force coefficient may be obtained from the
so-called Casimir—Polder formula [24]
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which relates the dispersion energy coefficient to an
integral of electric dipole polarizabilities over imaginary
frequencies. In the case of interaction between a closed
shell atom a and a linear homonuclear molecule m in its
totally symmetric ground state Eq. (1) is modified to [23]
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where 0 is the angle between R and the molecular axis,
whereas P,(cos 0) is the second-order Legendre polyno-
mial. The coeflicients C¢" and I',, can be written as

" =2Cg"(|I) +4¢g™(L) (4)
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respectively, where the parallel and perpendicular com-
ponents of the dispersion coefficient may be expressed as
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An average over all angles leads to
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A further step in the generalization of Eq. (1) leads to
an expression for the second-order dipole—dipole dis-
persion energy for two interacting homonuclear di-
atomic molecules m and n. The expression is given
explicitly for example, in Ref. [23] and involves the
coefficients
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and analogous definitions of C?"(||, L), C¢"(L,|) and
C¢"(L, 1) in terms of the parallel, oj(—iw;iw), and
perpendicular, o, (—iw;iw), components of the electric
dipole polarizability at imaginary frequency. Once again,
an average over the two sets of angles Q = 0, ¢ gives
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The leading nonadditive long-range term for the three-
body interaction energy can be written in terms of three-
body dispersion energy coefficients C5%¢ [25-31], which
satisfy [27]
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In particular, the dipole—dipole—dipole energy term for
three interacting molecules m, n, p involves combinations
of isotropic and anisotropic terms — the last indicated as
I, Ty and Ty, — which can all be expressed in terms
of coefficients mixing perpendicular and parallel compo-
nents of the imaginary electric dipole polarizability,
for example Cgmp(H7 ||1 ”)a Cgmp(Ha J—a ||)a Ul C;nnp(J-y J—y J—)’
using a self-explanatory notation [30, 31].

2.2 Dispersion contributions to the pair
polarizability function

For a pair of atoms a and b at a distance R along z, the
dispersion contributions to the parallel and perpendi-
cular components of the van der Waals static pair
polarizability can be written as [17, 32]
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The hyperpolarizabilities entering the equation describe
the third-order response of the system to an applied
external electric field F [33, 34]

afﬁ(—iw; i)

= oup(—i; i) +57,5,5(—iw;i0,0,0)FF5 4 - (22)

evaluated at a purely imaginary frequency argument.
The extension to molecules in their totally symmetric
ground state requires the calculation of the appropriate
rotational averages. The appropriate combinations of
tensor components entering the definition of
71 (—iw;i®,0,0) and y,(—iw;iw,0,0) for D.y; molecules
are given in Ref. [17].

Similarly to Cy, nonadditive three-body polarizability
increments owing to the dispersion interaction can be
defined [17]. The relevant integrals that are computed
and discussed in this work are

VVlabc:/dw,ycll(ilw’lw,O’O)ch(flahlw)oc‘(flw,lw) 5
(23)
Wz“bfz/dwyg(—iw;iw,0,0)ocb(—iw; iw)o(—iw;im) .

(24)
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We have not specified in detail the tensor components of
the a, b and ¢ subsystem (hyper)polarizabilities in the
equations. For all the integrals discussed in this section,
Wb, Wb, wibe and Wi, we use the same definitions as
in Ref. [17], where further details can be found.

2.3 Power series expansions and frequency
dispersion coefficients

The interaction properties introduced in the previous
sections can thus all be written in terms of integrals over
the frequency arguments of electric dipole (hyper)polar-
izabilities computed at purely imaginary frequencies (see
Eqgs. 2, 15, 18, 19, 23, 24). In recent years enormous
progress has been made in the field of the ab initio
determination of high-order optical properties, and it is
this progress that allows us to carry out an accurate
determination of the interaction properties.

The frequency dependence of the electric dipole (hy-
per)polarizabilities can be obtained by calculating the
frequency dispersion coefficients. Response functions for
a finite molecular or atomic system in its electronic
ground state are analytical in the frequency arguments,
except at the poles, where a frequency or a sum of
frequencies is equal to an excitation energy; thus, for
frequencies below the first pole, the linear, quadratic or
cubic response functions can be expanded in power se-
ries [21, 22, 35, 36]. In the specific case of the electric
dipole polarizability [21] and second hyperpolarizability
[22], one can write
typ(—; @) o Zw "Sup(—2n—2) ,  (25)
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Equation (25) is the usual Cauchy expansion [37]
introducing  the so-called Cauchy coefficients
S,(—2n —2). For optical processes involving a single
laser frequency, for example, in the direct current Kerr
effect, special versions of Eq. (26) were derived [22],
where the frequency dispersion coefficients depend only
on one order parameter. For purely imaginary frequency
arguments we obtain

o0

tp(—iwiim) = > (=1)"0™S,p(~2n - 2) (27)
n=0
Vupys (—i;i0,0,0) = Z(—l)”whpgg;g“”(zn) . (28)
n=0

where DJ5 K" (2n) = Dyp5(2n,0,0) [22]. Within cou-
pled- cluster’ response theory the expansion coefficients in
Eqgs. (27) and (28) are obtained directly by exploiting
their proportionality to the derivatives with respect to
the frequency arguments of the frequency-dependent
(hyper)polarizabilities [21, 22].
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2.4 Pade approximants, interaction energies
and (hyper) polarizabilities

It is well known that the electric dipole polarizability
(Eq. 27) has the property of being a Stieltjes series [16,
38-42]. The proper convergence criterion being satisfied
[41], one can introduce the Padé approximant [n, m|, [16,
40-42]

. Py(w)
el = o

providing an analytic continuation to Eq. (27) outside
the radius of convergence and effectively summing the
series within the radius of convergence. The subindex o
indicates that we are seeking an approximation to the
electric dipole polarizability a,s(—iw;iw). The set of
linear inhomogeneous equations defining the polynomi-
als P, and Q, is easily derived [16, 40, 41]. In particular,
the Padé approximants [n,n — 1], exhibit the correct
asymptotic behaviour as iw — oo and can be used as
a proper lower-bounding approximant. Upper bounds
can be derived using functions of other approximants
[16, 40, 41].

Using the Casimir—Polder formula, Eq. (2), we can
write

; (29)
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In practice, we observe good convergence in the series
n=1,2,... as n increases, and we find no need to apply
other approximants. The integrals in Eq. (30) can be
computed using the appropriate quadrature scheme [43].
Similar procedures were developed and are applicable to
higher-order multipole nonadditive interaction terms.
Equation (15) is, for instance, cast in a form that allows
the use of Padé approximants and the construction of

bounds in a way that is analogous to the two-body case.
Finally, we use the same technique to obtain from
Eq. (28) the values of ywé(—iw; i®,0,0) required in
the integrals defining W, Wyb, Wb and Wybe (see
Sect. 2.2).

3 Results
3.1 Computational details

Multiply- augmented correlation-consistent valence ba-
sis sets of Dunning and co-workers [44-47] were used.
The calculations of the static polarizabilities, hyperpo-
larizabilities and Cauchy coefficients were carried out
using a local version of the DALTON code [48].

All H, results are given for Ry = 1.449 au. It was
observed earlier [49, 50] and reconfirmed by several
calculations that polarizabilities determined at this in-
ternuclear distance lead to much better agreement with
experimental data than corresponding R. values. The
differences between Ry and R for H, are significant; for
example, we obtain Cy = 43.275 for properties calculat-
ed at R, = 1.4 au and 47.976 for Ry. For N, we use the
experimental internuclear distance R = 2.07432 au [5S1].

Owing to the very large number of data (six systems,
two- and three-body interactions) we discuss primarily
the results obtained for X>- and X3-type systems and
present only selected results for the mixed dimers and
trimers.

3.2 Dispersion contribution to the interaction energy

The dependence of the C¢* and C§* coefficients on the
choice of the basis set for the rare-gas atoms is illustrated
in Table 1. As a reference we compare with the pseudo
DOSD values of Kumar and Meath [28] and other
semiempirical literature data [52—54] published prior to

Table 1. Basis set dependence

of the dipole-dipole energy He Ne Ar Kr
coefficient, C¢¢, and of the -
triple-dipole coefficient, C§*, &
for the rare-gas atoms @ = He, d-aug-cc-pVQZ 1.4630 6.3958 65.3846 132.3651
Ne, Ar and Kr. Atomic units t-aug-cc-pVQZ 1.4633 6.4163 65.4076 132.1820
d-aug-cc-pV5Z 1.4595 6.3711 65.0415 131.6223
t-aug-cc-pV5Z 1.4599 6.3704 64.8657 131.7913
d-aug-cc-pVo6Z 1.4598
t-aug-cc-pVo6Z 1.4601
Ref. [28] 1.458 6.383 64.30 129.6
Ref. [52] 1.47 £ 0.01 6.87 £ 0.4 67.2 £ 3.6 133 £ 9
Refs. [53, 54] 1.461 6.43 64.20 127.9
Cgaa
d-aug-cc-pVQZ 1.4832 12.0774 530.7976 1635.8766
t-aug-cc-pVQZ 1.4834 12.1394 530.8278 1635.3663
d-aug-cc-pV5Z 1.4770 12.0074 526.8336 1617.4631
t-aug-cc-pV5Z 1.4774 12.0079 525.8923 1617.6288
d-aug-cc-pV6Z 1.4777
t-aug-cc-pV6Z 1.4780
Ref. [28] 1.472 11.95 518.3 1572
Ref. [52] 1.485 £+ 0.06 12.75 £ 0.42 528.0 £ 12 1569 + 36
Refs. [53, 54] 1.481 12.02 517.4 1554




Ref. [28]. For all the atoms we have almost reached
convergence with respect to extension of the basis set,
and the largest basis set C¢“ and C§* coeflicients are thus
close to the CCSD basis set limit. Increasing the
principal cardinal number always reduces the value of
the coefficient. Increasing from the double to the triple
level of augmentation generally leads to smaller correc-
tions, with the sign of the change depending on the
principal cardinal number.

All the results given in the following were obtained
using the largest basis sets, i.e. the t-aug-cc-pV6Z basis
for He and the t-aug-cc-pV5Z basis for the other atoms.
For the molecules, we used the d-aug-cc-pV5Z basis for
H; and the d-aug-cc-pVQZ basis for N.

Our best results for the rare-gas atom dimers and
trimers are given in Table 2. Similar results for the H,
and N, molecules are collected in Table 3. As an ex-
ample of the accuracy that can be achieved for mixed
system dimers, we present the rare gas—N, interaction
coefficients in Table 4. We include for comparison
reference values obtained in most cases again using

Table 2. Dipole-dipole, C¢, and triple-dipole energy, C§%, coeffi-
cients for the rare-gas atoms a, b, c=He, Ne, Ar and Kr. Atomic
units. The basis set is the t-aug-cc-pV6Z for He and the t-aug-cc-
pV5Z for Ne, Ar and Kr

System This work Literature
ceb
He-He 1.4601 1.458, 1.47 + 0.01, 1.461°
He—Ne 3.0308 3.029, 3.13 £+ 0.8, 3.041
He-Ar 9.5996 9.538, 9.82 + 0.35, 9.546
He—Kr 13.517 13.40, 13.6 + 0.6, 13.31
Ne—-Ne 6.3704° 6.383, 6.87 = 0.4, 6.43
Ne-Ar 19.613 19.50, 20.7 + 1.3, 19.53
Ne—Kr 27.505 27.30, 28.7 + 2.1, 27.12
Ar—Ar 64.866 64.30, 67.2 + 3.6, 64.20
Ar—Kr 92.295 91.13,94.3 + 5.7, 90.44
Kr-Kr 131.79 129.6, 133 + 9, 127.9
Cgbc
He-He-He 1.4780 1.472, 1.481°
He-He-Ne 2.9589 2.945, 2.961
He-He-Ar 10.296 10.21, 10.25
He-He-Kr 14.753 14.56, 14.55
He-Ne-Ne 5.9466 5917, 5.95
He-Ne-Ar 20.469 20.28, 20.33
He—Ne—Kr 29.263 28.87, 28.80
He-Ar-Ar 73.022 72.15, 72.24
He-Ar—Kr 105.35 103.6, 103.3
He-Kr—Kr 152.36 149.1, 148.2
Ne-Ne-Ne 12.008 11.95, 12.02
Ne—-Ne-Ar 40.814 40.41, 40.49
Ne-Ne—Kr 58.198 57.40, 57.20
Ne-Ar-Ar 144.37 142.5, 142.5
Ne-Kr—Kr 300.17 293.7, 291.2
Ar-Ar-Ar 525.89 518.3, 517.4
Ar-Ar-Kr 763.10 748.6, 744.6
Ar-Kr—Kr 1109.8 1083, 1074
Kr-Kr-Kr 1617.6 1572, 1554

4 The literature results for C¢ are taken from Ref. [28], Ref. [52]
and Refs. [53, 54] in this order

®Same coupled-cluster singles and doubles result as in Ref. [21]. See
also references to other previous theoretical results therein

°The literature results for C¢¥¢ are taken from Ref. [28] and Refs.
[53, 54] in this order
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semiempirical approaches. Deviations are in most cases
less than 1%.

The results presented here were obtained using the
CCSD approach and large basis sets and provide the
presently most accurate theoretical values of the as-
ymptotic dispersion coefficients for the energy. To de-
scribe all the dispersion effects more general formulas
including damping functions are applied [55]; however,
the asymptotic behaviour, given by the coefficients dis-
cussed here, is important as the limiting case. The good
agreement between our results and the DOSD results
confirms that we can use with confidence the same ap-
proach also to study the interaction effects on the electric
dipole polarizability.

3.3 Dispersion contributions to the interaction
polarizabilities

To estimate the accuracy of our results for the electric
dipole polarizabilities we can compare our static prop-
erties with reference literature data. For atoms, we
obtain (t-aug-cc-pV6Z basis set for He, t-aug-cc-pV5Z
for the other atoms) a(He) = 1.3828, a(Ne) = 2.6757,
a(Ar) = 11.1062, a(Kr) = 16.9120 and y(He) = 43.13,
y(Ne) = 110.21, y(Ar) = 1169.2 and y(Kr) = 2513.0 au.
Note that our definition of y includes an extra factor of 3
in comparison with Ref. [17]. Our results are close to
other recent reference state-of-the-art values: a(He) =
1.383192 [56] a(Ne) = 2.673 [57], a«(Ar) = 11.15 and
o(Kr) = 16.85[58], y(He) = 43.104 [14], y(Ne) = 110.2,
y(Ar) = 1179.0 [59] and yp(Kr) = 2810+ 90 au [60]. We
note that self-consistent-field values of the hyperpolar-
izabilities for Ne and Ar and a semiempirical value for
Kr were used in Ref. [17] and that some of these differ
significantly from the accurate results. For the H,
molecule, we have a = 5.17744, Ao = 1.81947 and
7 =621.34 au at R=14 au, to be compared with
o= 5.18149, Ao = 1.80900 [61] and y = 603.6 au [62].
For N, we obtain a=11.648, Ax=4.478 and
7| = 889.02 au. For comparison, we have a=11.562,
Ax=4.431 au [63] and y;= 868.2+6 au [59] as a best
estimate from an unrelaxed CCSD d-aug-cc-pV5Z basis
set calculation. This confirms that our static polarizabil-
ities and hyperpolarizabilities are accurate also for the
molecules studied.

For interaction polarizabilities in the dimers, both the
asymptotic coefficients Ag(||) and A¢(L) as well as the
integrals which determine their values (Egs. 18, 19) have
been discussed in the literature. To simplify the com-
parison with literature data we have given the results for
all the quantities in Table 5. For the nonadditive three-
body contributions to the polarizability following Ref.
[17] we give in Tables 6, 7 and 8 only the raw integrals as
defined in Eqgs. (23) and (24). In addition, similarly to
Ref. [17], we use for molecules the symbol < ... > to
denote an isotropic average, which, for example, for the
polarizability is (o + 2001)/3.

For He and H, previous results have been obtained
using the accurate data of Refs. [14, 15]. For these
two-electron systems the CCSD polarizabilities and
hyperpolarizabilities differ from those of Refs. [14, 15]
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Table 3. Isotropic dispersion energy coefficients, C¢"™, Cg"™", and
corresponding anisotropic coefficients for m

for Ns.

For the hydrogen molecule an interatomic distance

H, and N,. Atomic corresponding to R, was employed in the calculations, see text
units. The basis sets are d-aug-cc-pV5Z for H, and d-aug-cc-pVQZ

This work Ref. [29] Others (DOSD) Others (calc)
cyhte 12.043 12.09 12.10 [64], 12.38 [65, 66], 12.1 [23]  12.09 [67], 12.14 [49], 12.30 [68], 12.15 [69], 12.62 [70]
Ci,n, 0.1017 0.1006 0.1007 [65, 66], 0.112 [23] 0.103 [67], 0.105 [49], 0.1021 [68], 0.1009 [69]
Au,n, 0.01091 0.0108 0.0108 [65, 66], 0.013 [23] 0.0112 [67], 0.0117 [49], 0.0109 [68], 0.0107 [69]
e 73.555 74.43 73.33 [64], 73.8 [23] 71.46 [68], 75.63 [70]
noN, 0.1101 0.1068 0.106 [23] 0.1175 [68], 0.1293 [70]
AN 0.01258 0.0121 0.012 [23] 0.0147 [68], 0.0174 [70]
21N2
This work Ref. [71]
CibHbth 47.976 48.50
Th, 0.10980 0.1098
ST 0.01231 0.01240
THoHoH, 0.001401 0.001427
Cynete 617.53 619.93
I'n, 0.1177 0.1166
IoN 0.01405 0.01391
INoNoNs 0.001694 0.001685

Table 4. CgN2 and I'yN,, where @ = He, Ne, Ar and Kr. Atomic units

This work Ref. [29] Others (DOSD) Others (calc)
C?eNZ 10.254 10.23 10.22 [64], 10.30 [23], 10.10 [72, 73, 74] 9.795 [68], 10.27 [70]
CgleNz 21.015 20.97 20.95 [28, 29, 64], 21.8 [23], 21.44 [72, 73, 74] 18.88 [68], 21.75 [70]
C?er 69.174 68.69 68.64 [28, 29, 64], 71.6 [23], 69.02 [72, 73, 74]
C(]er2 98.027 97.28 97.20 [28, 29, 64], 101 [23]
T'Hen, 0.1071 0.1027 0.101 [23], 0.1143 [72, 73, 74] 0.1126 [68], 0.1253 [70]
I'NeN, 0.1048 0.0999 0.096 [23], 0.1108 [72, 73, 74] 0.1088 [68], 0.1226 [70]
Tam, 0.1107 0.1074 0.103 [23], 0.1194 [72, 73, 74]
ki, 0.1120 0.1087 0.107 [23]
Table 5. Dispersion contribu- » » - i K K
tion to pair polarizabilities of Wi m; Ag(1l) Ag' (L) Y ra()) 45 (1)
X,, for X = He, Ne, Ar, Kr.
waa and Wy were defined in He-He
Eqs (18) and (19). The last two ~ This work 9.4621 8.4105 39.488 23.426 39.042 22.310
columns report data obtained Ref. [17] 9.4167* 8.4170* 39.418 23.343 38.994 22.282
assuming Kleinman’s Ref. [18] 35 20
symmetry, i.e. V... = u./3- Ref. [32] 39.42 23.34
The rows labelled Ref [17] were Ref. [7] 40.19 23.39
filled in this work using the Ne-Ne
values for the frequency This work ~ 43.612 40.708 186.96 109.21 185.72 106.13
integrals given in that reference. Ref. [17] 40 36 168 99 166 95
The purely classical values were
subtracted from the data of Ref. [18] 200 14
Ref. [18] Ar-Ar
This work 1486.9 1191.5 5873.8 3598.3 5748.5 3284.8
Ref. [17] 1240 1120 5220 3081 5169 2954
Ref. [18] 5490 3150
Ref. [75]° 4981
Kr—Kr
This work 3602.8 3305.5 15298 8985.2 15172 8669.7
Ref. [17] 3760 3390 14609 8580 15657 8947
Ref. [18] 17333 9333

Based on the data of Refs. [14, 15]

® Multiconfiguration self-consistent field



only through the use of a finite basis set and our final
results for the interaction-induced polarizabilities are
therefore also very similar. We do not discuss in detail all
the dimers and trimers involving only He atoms and H,
molecules; selected results are given in the tables. We
concentrate instead on the interactions involving the
heavier atoms and N, molecules.

The differences between our results and those of
Champagne et al. [17] are due to their use of the CRA.
Moreover, they used values of atomic (hyper)polariz-
abilities which, as discussed previously, are not suffi-
ciently accurate. In the CRA (cf. Egs. 44, 51 of Ref. [17])
the ratio y/a is required. We can rescale the results of
Champagne et al. for identical atoms using the coeffi-
cient (V/a)this,work/(V/OC)Champagne' For He’ the rescaling
factor is 1.0009, and it is irrelevant. For the larger atoms
the change is instead significant. In particular, for Ne
ySCF is far too small, the rescaling coefficient is 1.4274,
and it leads to a much overestimated correction. For
example, for the two-body interactions (for which
a similar approximation was applied in Ref. [17]), the
rescaled values are ANNe(||) =239.9 and ANNe(L) =
141.7, whereas using the accurate WNNe and wNeNe
integrals we obtain 186.96 and 109.21 (Table 5). For Ar,
the rescaling coefficient is 1.1811 and using the same

Table 6. Dispersion contribution to pair polarizabilities for some
binary A—B species. See text and caption to Table 5

A B VVlab VVzab

This work Ref. [17] This work Ref. [17]
(H,) He 93.887 92.638  84.120 83.184
(Hy) (Hy) 325.00 320.94  297.17 293.73
(Np) (N2) 1037.1 1130 981.29 1020

Table 7. Dispersion contribution to triple-dipole polarizabilities of
X;, for X = He, Ne, Ar, Kr. W/ and Wy* were defined in
Egs. (23) and (24). The data in Ref. [17] were based on accurate ab
initio calculations for He, whereas those for Ne, Ar and Kr were
originally obtained using constant-ratio approximations, see text,
and self-consistent-field static o and y values (semiempirical value
for Kr o)

X VVlaaa VV2aaa

This work  Ref. [17] This work  Ref. [17]
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procedure we obtain 6165 and 3639, in much better
agreement with our results. Finally, for Kr, we multiply
by 1.1113 and get 16236 and 9535, again overestimating
the correction to the original values. Similar results are
obtained for the three-body nonadditive CRA terms.
The rescaling overestimates the corrections, in particular
for Ne.

Significant savings in the computational effort may be
achieved assuming Kleinman’s approximation, y,,.. =
V..../3, a relation which is exact for atomic static
hyperpolarizabilities. As shown in Table 5, for all the
atoms the 4%* coefficients derived within this approxi-
mation are relatively close to the accurate 4 values.
For three-atom interactions, Kleinman’s approximation
implies W = Wwy*¢ (Egs. 20, 21), and, as can be seen
from Table 7, such an estimate can be applied, although
it is less accurate than for two-body effects.

4 Conclusions

In this article we have discussed only the dispersion
contributions to interaction polarizabilities. As shown in
Ref. [17], for both dimers and trimers the other
contributions can be obtained more easily, requiring
only the knowledge of the static polarizability. We have
not discussed the higher multipole contributions. In
principle, these can easily and straightforwardly be
calculated at the CCSD level; however, the basis set
requirements increase for the quadrupole, octupole,
etc., polarizabilities, making calculations of the higher
multipole contributions at the same level of accuracy
more complicated.

In summary, accurate results can be obtained for
interaction-induced polarizabilities at large internuclear
distances. Separate calculations for the subsystems en-
able the use of large basis sets and proper treatment of
correlation effects. The most complicated dispersion
contributions require only the knowledge of hyperpo-
larizabilities that depend on one imaginary frequency
and they can be obtained from frequency dispersion
expansions.

Similarly to Cg and Cy, long-range coefficients can be
used to determine accurate asymptotic values of dis-
persion contributions to two- and three-body polariz-
abilities. They are needed even if shorter internuclear
distance exchange and overlap are taken into account
and/or some damping functions are applied in the R™"
expansion. Also, accurate long-range coefficients pro-

He 11.305 11.280 10.336 10.338 vide benchmark values for simpler approximations, such
1:;’ 1(3)}1'5932 ?Z;t)o ?Z873241 21388600 as the CRA approach, which may be applied for larger
Kr 53343 53300 50505 49200 molecules.
Table 8. Dispersion contribu- abe abe
tion to triple-dipole polarizabil- A B c W m
ities for some ternary A-B—-C L .
species. See text andycaption to 71 (—iw;i®w,0,0)  Ref. [17] 72 (—iw;i®w,0,0)  Ref. [17]
Table 8 (Ha) He He 120.26 118.75 109.54 108.25

(Hs) He (Hs) 423.07 418.06 391.19 386.61

(Ha) (Ha) (H,) 1511.8 1494.7 1413.6 1397.5

(Na) (N) (N) 10616 11200 10176 10300




258

Acknowledgements. M.J. acknowledges helpful discussions with R.
Moszynski and support of the Polish grant KBN 3 T09A 044 16.
This work was supported by the Danish Research Council (grant
no. 9901973).

References

1

[V N NN

. Chem Rev 100 (2000) Number 11, Special issue, van der Waals

Molecules 111

. Frommhold L (1981) In: Prigogine I, Rice S (eds) Advances in

chemical physics, vol 46. Wiley, New York, p 1

. Fowler PW, Sadlej AJ (1992) Mol Phys 77: 709
. Hunt KLC, Bohr JE (1986) J Chem Phys 84: 6141
. Moszynski R, Heijmen TGA, van der Avoird A (1995) Chem

Phys Lett 247: 440

. Moszynski R, Heijmen TGA, Wormer PES, van der Avoird A

(1997) Adv Quantum Chem 28: 119

. Moszynski R, Heijmen TGA, Wormer PES, van der Avoird A

(1996) J Chem Phys 104: 6997

. Fernandez B, Hittig C, Koch H, Rizzo A (1999) J Chem Phys

110: 2872

. Hittig C, Larsen H, Olsen J, Jorgensen P, Koch H, Fernandez

B, Rizzo A (1999) J Chem Phys 111: 10099

. Koch H, Hiittig C, Larsen H, Olsen J, Jargensen P, Fernandez

B, Rizzo A (1999) J Chem Phys 111: 10108

. Jaszunski M, Klopper W, Noga J (2000) J Chem Phys 113: 71
. Rachet F, Le Duff Y, Guillot-Noél C, Chrysos M (2000) Phys

Rev A 61: 062501/1-8

.Joslin CG, Goddard JD, Goldman S (1996) Mol Phys 89: 791
. Bishop DM, Pipin J (1992) J Chem Phys 97: 3375
. Bishop DM, Pipin J (1993) J Chem Phys 99: 4875
. Langhoff PW, Karplus M (1970) In: Baker JGA, Gammel JL

(eds) The Padé approximant in theoretical physics. Academic,
New York, p 41

. Champagne MH, Li X, Hunt KLC (2000) J Chem Phys 112:

1893

. Buckingham AD, Clarke KL (1978) Chem Phys Lett 57: 321
. Purvis GD, Bartlett RJ (1982) J Chem Phys 76: 1910
. Christiansen O, Hittig C, Jorgensen P (1998) Int J Quantum

Chem 68: 1

. Hittig C, Christiansen O, Jorgensen P (1997) J Chem Phys 107:

10592

. Hittig C, Jorgensen P (1999) Adv Quantum Chem 35: 111
. Langhoff PW, Gordon RG, Karplus M (1971) J Chem Phys 55:

2126

. Casimir HBG, Polder D (1948) Phys Rev 73: 455

. Axilrod PM, Teller E (1943) J Chem Phys 11: 299

. Muto Y (1943) Proc Phys Math Soc Jpn 17: 629

. Margoliash DJ, Proctor TR, Zeiss GD, Meath WJ (1948) Mol

Phys 35: 747

. Kumar A, Meath WJ (1985) Mol Phys 54: 823
. Meath WJ, Kumar A (1990) Int J Quantum Chem Symp 24: 501
. McDowell SAC, Kumar A, Meath WJ (1996) Can J Chem 74:

1180

. McDowell SAC, Meath WJ (1998) Can J Chem 76: 483
. Fowler PW, Hunt KLC, Kelly HM, Sadlej AJ (1994) J Chem

Phys 100: 2932

. Buckingham AD (1967) Adv Chem Phys 12: 107
. Buckingham AD (1978) In: Pullman B (ed) Intermolecular

forces — from diatomics to biopolymers. Wiley, New York, p 1

43.

44

46.
. Woon DE, Dunning TH Jr (1994) J Chem Phys 100: 2975
48.

. Coriani S, Hittig C, Rizzo A (1999) J Chem Phys 111: 7828

. Hittig C, Jorgensen P (1998) Theor Chem Acc 100: 230

. Korff SA, Briet G (1932) Rev Mod Phys 4: 471

. Langhoff PW, Karplus M (1967) Phys Rev Lett 19: 1461

. Langhoff PW, Karplus M (1970) J Chem Phys 52: 1435

. Langhoff PW, Karplus M (1970) J Chem Phys 53: 233

. Baker GA Jr (1965) In: Brueckner KA (ed) Advances in

theoretical physics, vol 1. Academic, New York, p 1

. Wall HS (1948) Analytic theory of continued fractions. Van

Nostrand, Princeton, NJ
Amos RD, Handy NC, Knowles PJ, Rice JE, Stone AJ (1985)
J Phys Chem 89: 2186

. Dunning TH Jr (1989) J Chem Phys 90: 1007
45.

Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys
96: 6796
Woon DE, Dunning TH Jr (1993) J Chem Phys 98: 1358

Helgaker T, Jensen HJA, Jorgensen P, Olsen J, Ruud K, Agren
H, Andersen T, Bak KL, Bakken V, Christiansen O, Dahle P,
Dalskov EK, Enevoldsen T, Fernandez B, Heiberg H, Hettema
H, Jonsson D, Kirpekar S, Kobayashi R, Koch H, Mikkelsen
KV, Norman P, Packer MJ, Saue T, Taylor PR, Vahtras O
(2000) Dalton, an ab initio electronic structure program, release
1.1 beta. http://www.kjemi.uio.no/software/dalton/dalton.html

. Meyer W (1976) Chem Phys 17: 27
. Magnasco V, Ottonelli M (1996) Chem Phys Lett 248: 82
. Huber KP, Herzberg G (1979) Molecular spectra and molecular

structure. IV. Constants of diatomic molecules. Van Nostrand
Reinhold, New York

. Tang KT, Norbeck JM, Certain PR (1976) J Chem Phys 64:

3063

. Leonard PJ, Barker JA (1975) Theor Chem Adv Perspect 1: 117
. Barker JA, Leonard PJ (1964) Phys Lett 13: 127
. Engkvist O, Astrand P-O, Karlstrom G (2000) Chem Rev 100:

4087

. Bishop DM, Pipin J (1989) J Chem Phys 91: 3549
. Larsen H, Olsen J, Hittig C, Jorgensen P, Christiansen O,

Gauss J (1999) J Chem Phys 111: 1917

. Hittig C, Hess BA (1996) J Phys Chem 100: 6243
. Hittig C, Jorgensen P (1998) J Chem Phys 109: 2762
. Rice JE, Taylor PR, Lee TJ, Almlof J (1991) J Chem Phys 94:

4972

. Bishop DM, Pipin J (1987) Phys Rev A 36: 2171
. Bishop DM, Pipin J, Rérat M (1989) J Chem Phys 92: 1902
. Christiansen O, Hittig C, Gauss J (1998) J Chem Phys 109:

4745

. Margoliash DJ, Meath WJ (1978) J Chem Phys 68: 1426

. Victor GA, Dalgarno A (1969) J Chem Phys 50: 2535

. Victor GA, Dalgarno A (1970) J Chem Phys 53: 1316

. Ford AL, Browne JC (1973) Phys Rev A 7: 418

. Visser F, Wormer PES, Stam P (1983) J Chem Phys 79: 4973
. Visser F, Wormer PES, Jacobs WPJH (1985) J Chem Phys 82:

3753

. Rijks W, Wormer PES (1988) J Chem Phys 88: 5704

. McDowell SAC, Meath WG (1997) Mol Phys 90: 713

. Tang KT, Toennies JP (1978) J Chem Phys 68: 5501

. Tang KT, Toennies JP (1981) J Chem Phys 74: 1148

. Bowers MS, Tang KT, Toennies JP (1988) J Chem Phys 88:

5465

. Jaszunski M, Jergensen P, Rizzo A (1995) Theor Chim Acta 90:

291



